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Abstract 
 

In a series of recent papers we have developed what we call the DEKI account of 
scientific representation, according to which models represent their targets via 
keys. These keys provide a systematic way to move from model-features to fea-
tures to be imputed to their targets. We show how keys allow for accurate repre-
sentation in the presence of idealisation, and further illustrate how investigating 
them provides novel ways to approach certain currently debated questions in the 
philosophy of science. To add specificity, we offer a detailed analysis of a kind of 
key that that is crucial in many parts of physics, namely what we call limit keys. 
These keys exploit the fact that the features exemplified by these models are limits 
of the features of the target. 
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1. Introduction 

Many scientific models are representations of a target system, a selected part or 
aspect of the world. To understand how these models work we have to under-
stand how representation works. In our (2016, 2018) we formulate the DEKI 
account of scientific representation which assigns a central role to what we call a 
key: a systematic way for moving from model-features to features to be imputed 
to the models’ targets.1 To the extent that their targets have those features, the 
models in question are accurate representations. 

So far we have discussed the account at a relatively high level of abstraction 
and said rather little about how keys work. But to understand how a model rep-
resents it is crucial to know the details of the key that accompanies it. The aim 
of this paper is to start filling this lacuna in the DEKI account by characterising 
a typical kind of key associated with many models in physics, namely what we 
call limit keys. This kind of key exploits the fact that the features of models are 

	
1 For a discussion of alternative accounts of representation see our 2017, 2020. 
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the results of taking certain features of the target system to a limit. Appropriately 
understood, these keys allow for models that radically diverge from their tar-
gets—in the sense that they are highly idealised—to nevertheless represent them 
accurately. As such, by making these keys explicit, the epistemic role of certain 
kinds of idealisation is clarified. However, as we will see, a limit key can only be 
invoked under particular conditions. Specifying these conditions forces us to pay 
careful attention to certain choices scientists make in the construction of their 
models, and doing so sheds a new light on certain controversies about models. 
Thus, this paper’s contribution is threefold. First, it develops the DEKI account 
of scientific representation by adding an analysis of limit keys. Second, it illumi-
nates a certain area of scientific practice by scrutinising the epistemic function of 
taking target-features to a limit in a model. Third, it demonstrates how such 
models can be accurate despite being idealised, thereby contributing to our un-
derstanding of the epistemic value of idealisation.2 

We proceed as follows. In Section 2 we briefly recapitulate the DEKI ac-
count of representation. In Section 3 we introduce limit keys. Section 4 illus-
trates how, and under which conditions, they work via some simple examples. 
Section 5 discusses the methodological assumptions that underpin the use of 
limit keys ‘in the wild’, where the relevant features that have been taken to a 
limit, and the nature of these limits themselves, are assumed (as part of scientific 
practice, rather than rigorously proven) to be relatively well-behaved. Section 6 
concludes. 

Before we begin, it’s worth commenting on how the use of limit keys to 
underpin cases of scientific representation contributes to our broader philosoph-
ical account of scientific modelling. We have argued elsewhere (Frigg 2010a, 
2010b; Frigg and Nguyen 2016) that scientific models should be thought of as 
akin to works of fiction. Now, it’s important to note that this claim concerns the 
ontological status of scientific models. As such, it is only a part of a complete 
philosophical account of model-based science. The fiction view of models tells 
us what models are, but not how they function representationally. The DEKI 
account of scientific representation is thus designed to supplement the fiction 
view by providing an account of how a scientific model, thought of as a work of 
fiction, might represent a target system. For our current purposes, the fictional 
nature of the models in question is left in the background, since we focus on the 
nature of a particular kind of key.3 

 
2. DEKI 

The DEKI account of scientific representation provides a general framework for 
thinking about the representational relationship between models and their tar-
gets. The framework specifies four conditions that must be met for a scientific 
model M to represent a target system T so that reasoning about the former can 

	
2 Our account thus avoids regarding idealised models as falsities, or misrepresentations. 
This comes at the costs of rejecting the notion that models have to be interpreted literally. 
For a discussion of this point see our 2019 and Nguyen 2019. 
3 But see our 2016 for a discussion of the interplay between DEKI and the fiction view of 
models more generally. 
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generate hypotheses about the latter. The conditions, which also give that ac-
count its name, are denotation, exemplification, keying up, and imputation. 

The first condition is that M denotes T. Denotation is a two-place relation. A 
name denotes its bearer; a map denotes its territory; a portrait denotes its sub-
ject; and a model denotes its target. Denotation is necessary but insufficient for 
scientific representation. It’s necessary because it establishes the bare sense in 
which M is about T. It’s insufficient because it doesn’t account for how we can 
reason about target systems via investigating their models, which is what 
Swoyer (1991) calls ‘surrogative reasoning’. DEKI’s other three conditions are 
designed to explain this. 

The second condition is that models exemplify certain features.4 Exemplifica-
tion is instantiation plus reference: something exemplifies a feature if it at once 
possesses that feature and refers to it. This can be illustrated with Goodman’s 
(1976: 52-56) example of a tailor’s book of fabrics. The swatches both instantiate 
the particular kind of cloth they are—e.g. herringbone or pin-stripe—and also 
refer to these cloth-properties themselves. 

Now, whilst scientific models may exemplify certain features, these features 
needn’t be carried over to their target directly. A piece of litmus paper dipped in-
to an acidic solution exemplifies redness, but it doesn’t represent the solution as 
being red. Rather, the litmus paper—understood as a representation—comes 
with a key which systematically relates colours to pH values. Similarly, whilst a 
map exemplifies a certain distance between, say, the marks that are labelled 
‘Newcastle’ and ‘London’, this distance isn’t carried over directly to the cities 
themselves: rather the map comes with a key specifying a scale with which to 
systematically relate map-distances to the actual distances that the map repre-
sents. The DEKI account insists, and that’s the third condition, that models 
function like litmus paper or maps in that they come with a key that associates 
model-features with target-features. In general terms, a key is a mapping which 
takes as arguments the exemplified features P1, ..., Pn of M and delivers as values 
some (possibly, but not necessarily, identical) features Q1, ..., Qm.5 

The final condition is that the model user imputes at least one of Q1, ..., Qm 
to T. If T has the feature imputed, then the representation is accurate in that re-
spect. If it doesn’t, then M still represents T as having such a feature; it’s just a 
misrepresentation in that respect. 

Tying these conditions together delivers: 

DEKI M represents T iff 
1. M denotes T; 
2. M exemplifies features P1, ..., Pn; 
3. M comes with a key K which associates exemplified features P1, ..., Pn with 

features Q1, ..., Qm; and 
4. a model user imputes at least one of Q1, ..., Qm to T. 

	
4 We place no restrictions on what counts as a feature. In the current context, (one-place) 
properties, n-place relations, functions, solutions to equations of motion, and structural 
relationships, among others, count as features. 
5 We are not claiming that there is an easy way to dissociate different model-features, nor 
that the key is insensitive to relationships between them. This is just a schematic render-
ing of how keys work, additional constraints may be required. 
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DEKI provides a general framework in which to think about the relationship be-
tween models and their targets, and the framework needs to be filled in in par-
ticular cases. In order to understand a particular instance, or style, of scientific 
representation, the ways in which the conditions are met need to be further ex-
plicated. Our concern in this paper is the third condition. What associations be-
tween model-features and features to be imputed to the target are there, and 
how does a key encode them? Our goal here is to illustrate how the account 
works, and to illuminate a particular kind of reasoning, namely where the key in 
question exploits the notion of a limit. As we discuss below, by analysing this 
kind of reasoning in terms of DEKI, we also gain additional understanding of 
the role of (at least one kind of) idealisation in science. 
	

3. Limit Keys 

Many models exemplify ‘extremal’ features: model-planes are frictionless, mod-
el-gases have an infinity of molecules, and model-planets are perfect geometrical 
spheres. What do models exemplifying such features tell us about target systems 
that don’t, and never will, have such features? The core idea that we develop here 
is that (at least some) models of this kind should be interpreted as being equipped 
with a limit key: a key that exploits the fact that the model-features can be under-
stood as resulting from taking certain features of the target to a limit. 

To give a definition of limit keys and analyse them, we must first introduce 
limits. We restrict our attention to two cases: number sequences and function 
sequences. A number sequence is a list of numbers linked by a rule. The list is usu-
ally indexed by an index α and the rule is given by an operation. As an example, 
consider the sequence 1/a for a = 1, 2, 3, …. We follow an often-used conven-
tion and write such sequence as fα. In our example we have fa = 1/a. Although 
intuitive, nothing depends on the index being a natural number (in the next sec-
tion we will see an example where α is a real number). 

We can now ask how fα behaves if α tends toward infinity. That is, we can 
consider the limit of fα for α → ∞, where the symbol ‘∞’ denotes infinity. If that 
limit exists and has value L, we write lima®¥ fα = L. The question now is how a 
limit can be defined precisely and under what circumstances it exists. The stand-
ard definition of a limit is couched in terms of positive real numbers ϵ (where ‘pos-
itive’ means ϵ > 0). These numbers can be arbitrarily small, but never equal to 0. 
Then, the limit L of the sequence fα for α → ∞ is defined as follows:6 

(1)  lima®¥ fa = L iff "ϵ > 0 $a’ such that "α : if α > α’, then |fa − L|< ϵ.  
Intuitively this means that we can keep fα as close to L as we like by making α suf-
ficiently large. Limits with α → ∞ are also referred to as infinite limits. If it is not 
possible to keep fα as close to L as we like by making α sufficiently large, then the 
infinite limit does not exist. If the limit exists, we say that the sequence fα converg-
es toward L. Consider again the previous example of fa = 1/a. We can now take 
the limit of this sequence for α → ∞ and it is obvious that lima®¥ 1/a = 0. 

Infinite limits can be taken irrespective of whether α is a natural number or 
a real number. When we look at cases where α is a real number, we can also ask 

	
6 This, and the below definition of a finite limit, are standardly stated in books on calcu-
lus. See, e.g., Spivak 2006: Chapter 5. 
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how the sequence behaves when α tends toward a particular (finite) value a. For 
instance, we can ask how fα behaves when α tends toward zero, or toward five. 
The standard definition of such a limit is couched in terms of two positive real 
numbers,	 ϵ and δ (where, as previously, ‘positive’ means that both ϵ > 0 and δ > 
0). The definition then says: 

(2) lima®a fa = L iff "ϵ > 0 $δ > 0 such that "a : if 0 < |a − a|< δ, then |fa − 
L|< ϵ. 

Intuitively this means that we can keep fα as close to L as we like by keeping α 
close to a. If this is not possible, then the limit does not exist. 

It’s crucial not to conflate the limit of a sequence with the value of the se-
quence at the limit: L and fa are not the same mathematical objects. To see this, 
consider the case where α → a. Since the definition of the limit requires 0 < |α − 
a| < δ (that is, the limit requires that |α	 − a| has to be strictly greater than 0), α 
will never be equal to a in taking the limit. So the limit L reflects how fα behaves 
when α comes arbitrarily close a without reaching it. It does not reflect the value of 
fα if α = a. The same holds for infinite limits: because α tends towards ∞ without 
ever reaching it, L is not the same as f∞. To express this difference clearly, we 
call L the limit value and refer to fα (or f∞) as the value at the limit.7 

That two values are conceptually distinct does not mean that their numeri-
cal values must be different. If both the limit value and the value at the limit ex-
ist and are equal, then the limit is a regular limit; if they are different it’s a singular 
limit (Butterfield 2011: 1077).8 

We will see examples of both cases later. Before discussing examples, we 
can now say what a limit key is. Let the target system have a feature of interest 
corresponding to some value in the sequence fα. To study the target, we con-
struct a model in which the parameter α assumes the extremal value. Let us 
begin with a finite value a. This means that the feature exemplified by the model 
is fa. Now assume (i) that the limit L of fα exists for α → a; (ii) that the value fa at 
the limit exists; and (iii) that the limit is regular (i.e. that L = fa). Under these as-
sumptions it follows that for all ϵ there exist a δ such that for all α, if |a − a|< d, 
then |fa − fa|< ϵ. This can be exploited. If we consider a limit α → a, the model 
user can infer that as long as α in the target is not more than δ away from a in 
the model, the value of fα in the target is no more than ϵ away from fa in the 

	
7 In cases where the extremal value is ∞, the below discussion regarding the value at the 
limit requires that we specify what this value is. In the case of number sequences we can 
follow Butterfield (2011: 1075) and consider the sequences as containing elements from 
N ∪	 {∞} (or R ∪	 {∞}), where ‘N’ denotes the natural numbers and ‘R’ denotes the real 
numbers. This is standard practice in the physics literature where the idea of a ‘natural in-
finite system’ corresponding to a system at an infinite limit is often invoked; see, for ex-
ample, Ruelle’s discussion of phase transitions as only occurring in systems that are ‘ide-
alized to be actually infinite’ (2004: 2). 
8 Although note that Butterfield recommends caution with respect to the use of the term 
‘singular limit’, given the variety of meanings one finds in the literature (see Butterfield 
2011: 1068). It’s worth noting here that Butterfield uses the phrase ‘non-singular’ limit to 
refer to both cases where the limit exists, and is equal to the value at the limit, and cases 
where the limit exists and there is no obvious value at the limit. Given our current pur-
poses (where we’re investigating models which are ‘at the limit’ so to speak), our use of 
‘regular limit’ is restricted to the first kind of ‘non-singular’ limit. 
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model. Or, more colloquially, if the parameter α in the target is close to the 
model value, then the feature fα in the target is close to fa in the model. In this 
way knowing the model feature gives information about the target feature. If a 
model user employs knowledge of limits in this way to infer from a model-
feature to target-feature she uses a limit key. Such a key works by taking the ex-
emplified feature in the model, fa, and converting it into a logically weaker prop-
erty: having a feature in the interval (fa − ϵ, fa + ϵ). It is this weaker feature that is 
imputed to the target system. In terms of the symbolic notation introduced in 
the last section, fa is P and Q is having a feature in the interval (fa − ϵ, fa + ϵ).9 

The argument is mutatis mutandis the same if we consider an infinite value. 
In this case the feature exemplified by the model is f∞. Assume that the limit for 
α → ∞ is regular. Then the model user can infer that if α in the target is larger 
than a threshold α’, then the value of fα in the target is no more than ϵ away 
from f∞ in the model. 

We can now turn to function sequences. The difference between number se-
quences and function sequences is that a function sequence is not a sequence of 
numbers but a sequence of functions fα(x). The functions can be of any kind, but 
to keep things simple we consider real valued functions: fα : R → R, where, as 
before, ‘R’ denotes the real numbers. An example of such a sequence is fα(x) = 
x−α. A function sequence can converge toward a limit function in different ways. 
One of the simplest is pointwise convergence: the function sequence fα(x) converges 
pointwise toward the function L(x) iff for every x ∈ R the value of fα(x) converges 
to L(x). If this is the case, we write limα→a fα(x) = L(x), and mutatis mutandis for α 
→ ∞. We call L(x) the limit function and fa(x) the function at the limit. As before, the 
limit function and the function at the limit can, but need not, be the same. If they 
both exist and are identical, then the limit is regular; if not, then it’s singular. 

Function sequence limits can be used to reason with the model about the 
target in the same way as number sequence limits. If the limit is regular it fol-
lows that for all x and for all ϵ > 0 there exists a δ > 0 such that for all α, where 
|α − a| < δ, we have |fa(x) − fa(x)| < ϵ (and, again, mutatis mutandis for α → ∞). 
This means that as long as (for each value of x) α in the target is not more than δ 
away from a in the model, the function fα(x) in the target is no more than ϵ away 
from fa(x) in the model.10 The limit key works by taking the exemplified feature 
of interest in the model, fa(x), and converting it into a logically weaker feature of 
interest, namely that the target’s feature is somewhere in the interval (fa(x) − ϵ, 
fa(x) + ϵ) for all x, which is imputed to the target system. 
 

4. Toy Examples: Stairs and Slopes 

Let’s see this kind of reasoning in action with two toy examples: one where it 
works and one where it breaks down. In order to understand a method, it’s often 
illustrative to see where it fails. So we start with an example, based on a number 

	
9 We drop the subscripts on the P and Q from here on for ease of notation since we’re on-
ly dealing with a single exemplified model-feature and connecting it to a single feature to 
be imputed to the target. 
10 Since we’re using the notion of pointwise convergence, the values of δ (and ϵ) can vary 
across different values of x. 
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sequence with a singular limit, where the limit reasoning fails. We then turn to 
an example where it works via a function sequence with a regular limit. 

Assume that your target system is a set of stairs that you want to carpet. To 
buy the right amount of carpet you need to know the stairs’ total length. The 
staircase in which the stairs are located has the shape of a right-angled triangle 
with both sides having unit length, and with the stairs sitting on the hypotenuse. 
Further suppose that there are a large number of stairs in the staircase and you 
somehow cannot work out their total length. You therefore resort to a model. 

Let α = 1, 2, ... be the index of a number sequence. You start with a stair-
case with two stairs and every time you progress to the next index you double 
the number of steps in the staircase: for α = 1 the staircase has two steps, for α = 
2 four steps, for α = 3 eight steps, and so on. This is illustrated by the three im-
ages to the left in Figure 1. In general, for staircases in our sequence, the stair-
case with index α has 2α steps. The dependant feature of interest, fα, is the length 
of the stairs with index α; that is, fα is the length of the set of stairs with 2α steps. 
The number of steps seems so large to you that your model is a fictional scenar-
io in which the stairs consist of an infinite number of steps. But a staircase with 
an infinite number of steps is a line, and so this idealisation results in a model, 
as shown by the ‘staircase’ to the right in Figure 1, where the length of the stairs 
is the length of the hypotenuse of a right-angled triangle whose other sides are of 
unitary length: f∞ = fmodel = √2.  

You of course know that the number of steps is not infinite, but you think 
that this is not a problem because you can use a limit key. The number of steps 
is large, and you think that it is in fact large enough for the length of the model-
stairs to be close enough to the length of the real stairs for all practical purposes, 
in particular to buy the right amount of carpet. 
 

 
           1                                   1                         1                                           1 

Figure 1: A sequence of staircases, with the value at the limit 

This is mistake. Looking at Figure 1, it’s easy to see that the total length of 
the stairs is two irrespective of the number of stairs: fα = 2 for all α = 1, 2, .... 
Hence, trivially, limα→∞ fα = 2. So L ¹ fmodel. This shows that the limit is singular 
and we’re now in a position to see how reasoning with a limit key breaks down 
(we’re using definition (1) since we’re dealing with an infinite limit). From 
lima®¥ fα = 2 we know that for every ϵ > 0 there is an α’ such that: for all α, if α 
> α’, then |fa − 2|< ϵ. But applying the limit key would amount to mistakenly 
assuming that for all ϵ > 0 there is an α’ such that for all α, if α > α’, then |fa − 
√2|< ϵ. This is false. In fact, for any ϵ < 2 − √2 there is no α’ such that for all α, 
if α > α’, then |fa − √2|< ϵ. So no matter how many stairs there are, the length 
of the stairs doesn’t come close to the length of the hypotenuse, not even in the 
limit for the number of stairs toward infinity! This is why the limit key doesn’t 

1 1 1 

...	

1 
	√2	
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work here, and you would buy the wrong length of carpet if you were to reason 
in this way. So by using a limit key in a case where the limit in question is singu-
lar, the model yields wrong results. 

Our second example works with a function sequence and provides an illus-
tration of a case where limit keys work. Suppose your target system is a ski-
jumper and you want to know how her position on the slope changes through 
time. To this end you construct a model, which is a fictional scenario consisting 
of a rectangular object sliding down a perfect geometrical plane with an inclina-
tion of θ. The materials of the object and the plane are such that there is no fric-
tion between them, and the only force acting on the object is the linear gravita-
tional force	F&⃗  = mg, where g is the gravitational constant on the earth’s surface. 
With some simple trigonometry we can calculate the magnitude of the compo-
nent of the force acting on the object parallel to the surface of the plane: f model = 
mg sin(θ), as displayed in Figure 2.  

 

	
Figure 2: Ski-jumper model 

 
Using Newton’s equation, and without loss of generality setting the original po-
sition and initial velocity to zero, delivers the following position function along 
the slope for the object: 

(3)  xmodel (t) = 1/2t2g sin(θ). 
This function is an exemplified feature of the model, and in the idiom of DEKI 
it is P.  

We know perfectly well that the real slope isn’t a frictionless perfect plane, 
and that there are forces other than gravity acting on the skier such as air re-
sistance and the Coriolis force. Given this, what does the model tell us about the 
real-world skier’s position? To answer this question we need a key. In keeping 
with the spirit of our above discussion, we understand the model as a limiting 
case of the real situation and aim to construct a limit key. 

To make a start, let us assume that the only force acting on the skier not 
taken into account in the model is friction, and that friction is linear. This is a 
strong assumption and we come back to it later; let’s run with it for now to see 
how the reasoning works. The magnitude of the friction force acting on the skier 
then is proportional to the magnitude of the force perpendicular to the plane, f⊥ 

= mg cos(θ), where the proportionality constant is the friction coefficient µ. 
Then, the actual force acting on the skier parallel to the slope is given by f  = mg 
sin(θ) − mgµ cos(θ). This means that the actual position function of the skier is: 
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(4)  xfriction (t) = 1/2t2g(sin(θ) − µcos(θ)). 

Now regard µ as a freely varying parameter and notice the following relation-
ship between xmodel(t) and xfriction(t): 

(5)  limµ®0 xfriction(t)	= xmodel(t). 
To see this, and to connect it to our above definition of a limit, it suffices to no-
tice that the relevant δ for each ϵ is given by: 

(6) 	δ = 2ϵ/cos(θ)t2. 
It’s then easy to see that the condition in definition (2) is satisfied (for all values 
of t) and that the limit function is equal to the function at the limit. Hence the 
limit is regular. This allows us to use a limit key: for all times t and for any ϵ > 0, 
it is the case that as long as µ < δ, it’s guaranteed that |xfriction(t) – xmodel(t)| < ϵ. In 
words: as long as the friction coefficient in the actual system is less than δ, the 
position function in the model will differ from the actual position function by 
less than ϵ. 

In the terminology of DEKI, the feature exemplified by the model, P, is 
xmodel(t) = 1/2t2gsin(θ). The feature Q is: the position of the skier in the target is 
in the interval (xmodel(t) – ϵ, xmodel(t) + ϵ) at all times t, where ϵ depends on the 
lower bound the model user can set on the value of µ in the target. The key then 
acts to connect feature P to feature Q. We can think about the key as a mapping 
from the exemplified features to the features to be imputed to the target. So, 
K(P) = Q. The value of the key, i.e. the feature Q, is then imputed to the target. 
Interpreted in this way, the model is an accurate representation (because the po-
sition function of the skier does actually fall within the bound imputed). 

It’s important to note that this doesn’t rely on the idea that the friction act-
ing on the skier is in any sense negligible or makes no difference to her move-
ment. The exact same reasoning can be applied to all skiers irrespective of what 
the level of friction in the target is. Even if friction plays a significant role in the 
target system, Equation (6) can be used to say how the real skier moves in exact-
ly the same way in which it is used in situations in which friction is small. We 
can use the frictionless model to impute Q as above, the only difference being 
that the interval defining Q is wider. And this will still result in the model being 
an accurate (albeit logically weak) representation.11 

 
5. Limits in the Wild 

Let us now return to our assumption that that the only force acting on the skier 
not taken into account in the model is friction, and that friction is linear. This 
assumption allowed us to specify the ϵ and the δ explicitly and prove that the 
limit exists. We made this assumption to illustrate how limiting reasoning 
works. It is, unfortunately, unrealistic in two ways. First, there are known un-
knowns: even when further factors are known, it is not always possible to calcu-

	
11 Thus, our approach diverges from Strevens’ (2008, Chapter 8). According to him, ide-
alisations work by deliberately misrepresenting non-difference makers by taking a param-
eter representing them to an extremal value. Using limit keys allows distortions to accu-
rately represent systems even where they do make a difference. In fact, they allow us to 
quantify the difference that they make by means of the size of the interval that results af-
ter applying the key. 
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late their effect explicitly. We know that the real slope is uneven in various ways 
and that this unevenness has an effect on the real skier’s motion, but we cannot 
capture this effect mathematically. Nor can we calculate the effect of air re-
sistance that crucially depends on the skier’s shape, which we know not to be a 
rectangular block! And so on. So we cannot always explicitly specify the differ-
ence between a model and the target as we did in the last section; linear friction 
is a special case in that regard. Second, and worse still, there may be unknown 
unknowns: we may not know all the factors that influence a situation. For ex-
ample, the skier may be subject to forces we don’t know. Knowing all the rele-
vant factors would require a God’s eye perspective that mortal scientists don’t 
have. The consequence of this is that in practice we cannot neatly quantify the 
differences between model and target, and we cannot rigorously prove that the 
model is a regular limit of sequence that contains the real-world target. 

But it remains that when we reason using a limit key, we’re relying on the 
existence of such a limit. In the abstract, such a key requires the following. We 
have a model with a particular exemplified feature (P). We assume that the 
model is the system that would result, were we to take all of the potentially rele-
vant features of the target to a certain limit. As such, by exploiting this, we can 
reason from the fact that the model exemplifies P, and assuming that the model 
is the result of taking all of the relevant limits of the target, that the target’s fea-
ture of interest will be within the interval (P – ϵ, P + ϵ) around the feature P ex-
emplified by the model (where ϵ will depend on the limit in question) . In terms 
of DEKI, Q is ‘being in the interval (P – ϵ, P + ϵ)’, and Q is imputed to the tar-
get. Now, whether or not the result of this reasoning, i.e. whether target’s fea-
ture of interest is in this range, is true will depend on whether it is the case that 
by taking all the limits of features in the target we will in fact arrive at the model 
in question. And this is usually not the sort of thing that admits mathematical 
proof. 

Does the fact that we cannot prove that the limit exists pull the rug from 
underneath limiting reasoning? For those who require mathematical proofs, yes. 
But there are rarely, if ever, mathematical proofs backing the successful applica-
tion of a model to the world.12 What scientists will do in this situation is to form 
a qualitative judgement against their background knowledge. They will take into 
account everything they know about forces and their effect on bodies, and they 
will make a qualitative estimate of the magnitude that this effect will have on 
the skier. This will give them an interval (xmodel(t) – ϵe, xmodel(t) + ϵe), where the 
superscript ‘e’ stands for ‘estimate’, of which they will be willing to say that the 
real position of the skier will lie in that interval given everything they know 
about forces. This defines a feature Qe that they can then impute to the target. 

Limits have not become obsolete. The justification for imputing Qe rests on 
the belief that a limit exists and that the model function is only so far away from 
it. Let us spell this out in more detail. Meet an old friend: Laplace’s Demon 

	
12 And there are good reasons to doubt that we should expect there to be such proofs. 
Whether or not a model is an accurate representation depends on features beyond the 
model: it depends on the nature of the target system in question. As such, whilst we may 
be able to prove that if the target is such that by taking its relevant features to the limit we 
arrive at the model, then the model will allow us to reason successfully about the target, 
the antecedent of this conditional isn’t the sort of thing that admits mathematical proof.  
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(Laplace 1814). The Demon knows all the forces and can write down the true 
position function xskier(t) of the skier. This function will depend on a myriad of 
parameters. The claim that scientists—mostly implicitly—rely on is that if the 
Demon now took all of the parameters in xskier(t) to their values in the model, 
that limit would turn out to exist and to be regular. That is, they assume limxski-

er(t) = xmodel(t), where we write ‘lim’ (without subscripts) to indicate that the limit 
is taken for all parameters. Of course, limxskier(t) = xmodel(t) is not provable, not 
least because human scientists, lacking the powers of the Demon, don’t have ac-
cess to xskier(t). It is a transcendental assumption in the sense that it must be 
made for it to be possible to apply the model using a limit key even though the 
assumption cannot be proven. But it is an assumption that scientists must make 
if they are to assume that the model is informative about the target (through a 
limit key). If the limit does not exist, or if it is singular, then there is no reason to 
assume that the target behaves like the model, even if the model’s parameter 
values are close to the target’s parameter values. 

Carpets and ski jumpers are toy examples. But the same inferential patterns 
are at work in ‘real’ applications. Consider the Newtonian model of a planet’s 
orbit. The model involves scientists imagining the following fictional scenario: 
two perfect spheres, both with a homogeneous mass distribution, are placed in 
otherwise empty space. One is much more massive than the other, and the only 
force acting on the spheres is the gravitational attraction between them. Com-
bining these assumptions with Newton’s second law, assuming that the heavier 
sphere is at rest, and letting 𝑥⃗ be the vector pointing from the centre of the heav-
ier sphere to the centre of the lighter sphere, gives an equation of motion for the 
planet in the model: 	𝑥	&&&̈⃗  = –Gms𝑥⃗/|𝑥⃗|3, where ms is the mass of the heavier 
sphere, and G is the gravitational constant. The trajectory	𝑥⃗model(t) of the model 
planet is the solution of this equation. 

This equation of motion isn’t the exact equation of motion governing the 
actual planet: even supposing that Newtonian mechanics were correct, the actu-
al force that determines how a planet moves includes forces beyond its gravita-
tional interaction with the sun. So we have an exemplified feature of a model, 
𝑥model(t), which we know doesn’t match any actual feature of the target. What, 
then, does the motion of model-planet tell us about the motion of a real planet? 
The answer, we submit, is provided to us by a limit key. We should think of the 
actual trajectory	𝑥⃗planet(t), available to the Demon but not to us, as being such 
that if the Demon took all the parameters in 𝑥⃗planet(t) to limits corresponding to 
their value in the model—presumably most of them will be taken to zero given 
they don’t appear in	𝑥⃗model(t)—then the Demon would find that lim𝑥⃗target(t) = 
𝑥model(t). If we combine this result with the assumption that the actual value of 
these parameters in the real world are not too far away from their values in the 
model, we can infer that the model trajectory is not too far away from the real 
trajectory.13 

	
13 Here we state the model-target relationship in terms of the model being ‘close’ to the 
real system, as standardly presented in physics. As noted above, limit keys obviously 
cover such cases, but they’re not restricted to situations where the model is ‘close’ to the 
target. They just require that there be the right kind of systematic relationship between 
the parameter values and trajectory. 
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This kind of reasoning has been incredibly successful throughout the histo-
ry of physics, and indeed engineering. From planetary motion to rocket launch-
es, it has worked successfully in countless applications. This lends credibility to 
the use of limit keys in mechanics, and it makes scientists confident that limit 
keys will also work in future applications. It is important to realise, however, 
that inductive support for limit reasoning does not ‘prove’ the method right. In 
fact, scientists have worried about these limits time and again and delimiting the 
scope of their successful use has been a scientific endeavour in its own right. As 
an example, consider Poincaré’s study of the role of initial conditions. Among 
the parameters that 𝑥⃗planet(t) contains are the planet’s position and momentum at 
a certain initial time t0. This is because Newton’s equation of motion tells us 
where a planet is at a later time t > t0 only if we specify the planet’s position and 
momentum at some initial time. This specification is the planet’s initial condition. 
In practice scientists can only ever specify an approximate initial condition be-
cause it’s impossible to measure the condition with absolute precision. 

Limit reasoning then would say that if the initial condition in the model is 
sufficiently close to the initial condition of the real planet, then the model-
trajectory is sufficiently close to the real planet’s trajectory (the comment in 
footnote 13 applies again here). Scientists took this assumption for granted until 
Poincaré showed that it was not true in general. Poincaré studied what is now 
known as the three-body-system, which is exactly like the Newtonian model ex-
cept that it has a third sphere in it. If you want an interpretation, you can think 
of these three spheres as the sun, the earth, and the moon. What Poincaré found 
was that the three-body-system exhibits what is now known as sensitive depend-
ence on initial conditions: even if two initial conditions are arbitrarily close, 
their trajectories can diverge. This effect is now also known as chaos.14 This 
means that the limit does not exist and hence the model cannot be equipped 
with a limit key. This has far reaching consequences. Specifically, it means that 
Newton’s model cannot be equipped with limit key and be expected to provide 
true results concerning a planet’s trajectory, at least not universally and unre-
strictedly. What exactly the restrictions are is a question that is discussed in the 
discipline of chaos theory. The details are beyond the scope of this paper, but 
one of the crucial results is that in contexts like the ones that Poincaré consid-
ered a limit key can be expected to deliver correct results only for finite time 
spans. So chaos theory tells us that the transcendental assumption is justified on-
ly for finite times. 

And questions about limits go beyond initial conditions. What happens if 
the dynamics of the target system is different from the dynamics of the model in 
certain respects? This question promoted a study of what is now known as struc-
tural stability, which continues to date.15 So the study of the boundaries of limits 

	
14 For a discussion of Poincaré’s discovery of sensitive dependence on initial conditions 
see Parker 1998 and for discussion of the implications of chaos for predictability see 
Werndl 2009. For accessible introductions to chaos see, for instance, P. Smith 1998 and 
L.A. Smith 2007. For an advanced discussion see, for instance, Lichtenberg and Lieber-
mann 1992. 
15 For technical discussion of results see Pilyugin 1991. Frigg et al. 2014 provide an acces-
sible introduction and a discussion of philosophical consequences. 
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is not only a philosophically interesting issue; it is also a field of active scientific 
research. 

 
6. Conclusion 

Limit keys provide a concrete example of the sort of keys that the DEKI account 
of scientific representation urges we should focus on when investigating what 
our scientific models tell us about the world. Understanding how they work con-
tributes to our broader understanding of scientific representation, and indeed the 
epistemic value of idealisation. Moreover, as demonstrated by the previous dis-
cussion, by requiring that we specify the key, thinking about (at least some) 
models in physics through the lens of DEKI helps us understand what sort of 
methodological assumptions underpin the use of those models. In order to un-
derstand how such models work, we have to pay careful attention to which fea-
tures of a model are exemplified, and which features of its target are taken to 
which limit. 

This lesson generalises to other, more philosophically contentious, models. 
For example, the Ising model of ferromagnetism invokes the thermodynamic 
limit, and is thus set on an infinite lattice (Baxter 1989). Given that its target sys-
tems—iron bars for example—do not consist of an infinite number of particles, 
how should we understand the idealisation present in the model? In this case, 
the problem is particularly pressing since the model in question underpins much 
of our current understanding of phase transitions. In the case of (the original in-
terpretation of) the Ising model, the phase transition consists in an iron bar shift-
ing between ferromagnetic and paramagnetic phrases, a transition which is un-
derstood as being represented by the occurrence of a non-analyticity in the mod-
el’s free energy function. Taking the lattice to the infinite limit is necessary for the 
model to exhibit such a transition: for mathematical reasons, a non-analyticity 
cannot occur in the free energy function of a system with a finite particle num-
ber, and hence phase transitions—defined as non-analyticities—cannot occur in 
systems with finitely many particles. For this reason, physicist David Ruelle 
says that phase transitions only occur in systems that are ‘idealized to be actual-
ly infinite’ and that this ‘idealization is necessary’ (2004: 2). 

In the DEKI framework, the way of analysing what the model tells us 
about actual, finite systems, requires specifying a key linking an exemplified fea-
ture of the model with a purported feature of the target. As such, we need to 
specify which feature of the target we’re interested in, and how it’s related to the 
relevant feature of the model. There are two available options. The first option is 
to take the relevant feature of the model to be the non-analyticity of the free en-
ergy function; in which case we are in a situation where we have a sequence of 
systems, each a finite lattice lacking such a feature, and an infinite model at the 
limit of such a sequence, having such a non-analyticity. Such a position is advo-
cated, for instance, by Batterman (2001, 2011) who argues that the infinite mod-
el is different from the finite systems and that phase transitions are therefore 
emergent phenomena. Under this interpretation we have an example of a singu-
lar limit, and, as argued above, we cannot reason about the target based on the 
limit-key. 

An alternative approach is recommended by Butterfield (2011) who argues 
that the relevant feature is not the non-analyticity of the free-energy function, 
but rather the free-energy function itself (or more specifically, the magnetisation 
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of the lattice, which is the partial derivative of the free energy with respect to the 
external field).16 In this case, if we again consider a sequence of lattices, we have 
a sequence of free-energy functions that converges pointwise to the free-energy 
function of the model (this is despite the fact that each of the free-energy func-
tions on finite lattices is analytic, and the model’s free-energy function is not). In 
which case we can employ the limit key strategy which we discussed in the last 
section. 

Which of these points of view is correct is a deep question in the founda-
tions of physics that we cannot address in this paper. Our aim here is a different 
one, namely to show that in order to reason using the limit key, the model must 
exemplify a feature that is the regular limit of a target-feature. Where an exempli-
fied feature is like this, the key allows us to export a feature from the model to 
the target that the latter actually has. Conversely, if the exemplified feature is 
not like this, using a limit key will make the model an inaccurate representation. 

This provides two general morals. First it demonstrates that properly un-
derstanding these cases of model-based science requires paying careful attention 
to which features of the models are exemplified, and which specific features of 
the target system are taken to which limit. The discussion of the Ising model 
generalises. Choosing a particular feature of the target system to focus on, and 
constructing a model that takes it to the limit in the right way, is a significant 
aspect of scientific modelling. Understood in the way we’re urging, it is para-
mount that any model employing extremal features is evaluated carefully in 
terms of limits, and of how those limits are constructed. Second, and more gen-
erally, it demonstrates that limit keys provide concrete examples of the keys in-
voked in the DEKI account of scientific representation, thereby illuminating 
how it is to be explicated in practical applications. As applied to models that are 
idealised in the sense discussed here, this also demonstrates how idealisation—
understood as the, sometimes radical, distortion of a relevant feature of a tar-
get—can play a positive epistemic role, despite, or even better, in virtue, of that 
distortion.17 
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