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Concepts as Plug & Play Devices

Nicholas Shea

Abstract

Research on concepts has focused on categorization. Categorization starts with a stimulus.
Equally important are episodes that start with a thought. We engage in thinking to draw out
new consequences from stored information, or to work out how to act. Each of the concepts
out of which a thought is constructed provides access to a large body of stored information.
Access is not always just a matter of retrieving a stored belief (semantic memory). Often it
depends on running a simulation. Simulation allows conceptual thought to draw on
information in special-purpose systems, information stored in special-purpose computational
dispositions and special-purpose representational structures.

While the utility of simulation, prospection or imagination is widely appreciated, the role of
concepts in the process is not well understood. This paper turns to cognitive and
computational neuroscience for a model of how simulations enable thinkers to reach novel
conclusions. Carried over to conceptual thought, the model suggests that concepts are ‘plug
& play’ devices. The distinctive power of thought-driven simulations derives from the ability
of concepts to plug into two kinds of structure at once: the combinatorial structure of a
thought at one end, and special-purpose structural representations at the other.
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(1) Introduction

Concepts are the recombinable components of conscious, deliberate thought. When
Darwin asked himself shall | marry? his thought made use of his concept of marriage.
Concepts are found in our judgements, hypotheses, intentions, aims, and occurrent desires
and beliefs. Their subject matter encompasses the concrete and abstract, particulars and
properties, the physical, logical and socio-cultural, and runs from the mundane to the
extraordinary: DOG, NUMBER, HEAVY, AND, MONDAY, BUS, MANDELA.! They are sub-propositional: a
concept does not make a claim about the world on its own, but only when combined with
other concepts into a complete thought. Here, only when a representation can figure as a
sub-propositional recombinable component of deliberate, conscious thought? will it count as
a concept. (Such a representation might also show up elsewhere, e.g. in long-term memory
or in non-conscious processing.) That stipulation serves to pin down our topic, concept-
involving thinking.

Most work on concepts focuses on categorisation — understandably, since
experiments have been designed so that participants can respond to a stimulus. But just as
important is the capacity to use concepts to think through what to do, or to work out what is
the case, unprompted by a current incoming stimulus. These episodes of thinking begin with
a conceptual thought.

Each concept in a thought affords access to a rich body of information. Some
information can be accessed as explicit semantic memories: further conceptually structured
thoughts. For example, my concept of Paris allows me to retrieve the belief, Paris is the capital
of France. But often the way concepts provide access to information is not simply a matter of
retrieving stored information. It depends on running simulations (in a broad sense). For
example, in prospective reasoning the thinker uses the resources of episodic memory to
imagine what a certain scenario would be like. In sensorimotor planning, the thinker simulates
an action, observes the likely outcome, and evaluates it, in order to decide that to do
(Carruthers 2015, pp. 152-160). In spatial planning, the thinker simulates routes through the
environment in order to decide which one to follow. A simulation does not simply retrieve a
fact stored in memory. But it does allow conceptual thinking to rely on and make use of
information found in other systems, information that is stored in special-purpose
computational dispositions and special-purpose representational structures.

When theorising about the way that concept-involving thoughts drive offline
processing, the usual paradigm is reasoning. In reasoning we move from some thoughts to
others using a general-purpose computational process that is rather like theorem proving in
logic. If | want to visit Paris and recall that Paris is the capital of France, then | can reason my
way to the conclusion that | ought to polish up my French. Human deductive reasoning can
be plausibly modelled in this way. It has proven famously tricky to expand this into an account
of ampliative or abductive inference (Fodor 2008, pp. 115-126). Simulation is a different,
complementary, way of performing inferences. It may account for many of the cases that
(since they lie beyond the purview of reasoning within a language of thought) Fodor declared
to be the great mystery of cognitive science.

Small caps refer to concepts.
Cp. ‘endogenous control’ (Calzavarini forthc); ‘controlled semantic cognition’ Jackson (2021).



A focus on reasoning has meant that the importance of simulation, prospection or
directed imagination has been downplayed. Even Johnson-Laird’s rich mental models
approach (Johnson-Laird 1980) in practice focuses on how thinkers make deductive, inductive
and modal inferences. It has little to say about the kind of simulation, prospection and
imagination at issue here (Nersessian 2018).

At the same time, a smaller stream of work has highlighted the way thinkers arrive at
new beliefs on the basis of sensory or sensorimotor emulation or imagination (Grush 2004,
Gendler 2004). Laurence Barsalou has famously argued that this is what a concept consists in
— a simulation of a perceptual state (Barsalou 1999, 2003). Without endorsing that claim, the
rich body of data he and his collaborators have collected does show that sensory, motoric and
affective processing has a strong influence on the way conceptual thinking unfolds. Nancy
Nersessian relies on these findings to argue that one way in which people solve problems is
by constructing a mental model that is manipulated through simulation of events, situations
and processes (Nersessian 2018). Theorists have puzzled about whether this is a form of
inference or whether it is more like observing the world when performing a real experiment.
Plausibly, it is neither: it is its own kind of thing (Aronowitz and Lombrozo 2020). | use the
term ‘thinking’ broadly so as to include processes that reach a conclusion via a simulation.

Running a simulation gives conceptual thinking access to information that could not
simply be retrieved from memory or inferred by reasoning. For example, in a classic series of
experiments, people were asked questions about tipping glasses of water. They had to predict
when water would spill out. Reasoning about the problem usually produced the wrong
answer. People who imagined performing the action were able to get the correct answer
(Schwartz and Black 1999). Trying out scenarios in imagination has the advantage of not
having to suffer the consequences of a real experiment (hypotheses can die in our stead:
Dennett 2008). Given the opportunity to do both, people can weigh the relative costs and
benefits of each (Dasgupta, et al. 2018).

Deliberate thinking uses working memory, so it is no surprise that the kind of mental
simulation we are concerned with depends on working memory resources in the prefrontal
cortex (PFC). Working memory activates contents in sensory areas. During visual imagination,
dorsal PFCinfluences activity in posterior visual areas (Passingham 2021, pp. 380-7). The same
is true during planning. Planning can also involve motor imagery in pre-motor cortex and
parietal cortex (Passingham 2021, pp. 380-7). Imagining future events (prospection) draws on
the episodic memory system in the hippocampus (Thakral, et al. 2020, Passingham 2021, pp.
390-5).

It may seem strange that a simulation can allow a thinker to discover something new
(Gendler 2004). Simulation depends on the thinker already having the information available,
in some sense. The information may be encapsulated in a special-purpose system and so not
directly available for use in conceptual thought. Running a simulation is a way of bringing the
information into conceptual thinking (Aronowitz and Lombrozo 2020). A complementary idea
is that perceptual systems encode situational constraints (Barsalou 2003, p. 536). These
constraints guide a simulation so as to take us to novel conclusions (Nersessian 2018,
Lombrozo 2020). Assumptions about the world can be implicit in the way representations are



processed (Shea 2015). For example, the visual system is disposed to transition from a certain
distributions of contrast and edges to representations of shapes (Gli¢lii and van Gerven 2015).
Those dispositions implicitly encode assumptions about how contrast and edges carry
information about shapes, given the statistics of our environment. Processing dispositions are
in effect coding implicit assumptions. Those assumptions constrain how a simulation unfolds.
A thinker may have little explicit knowledge about the statistics and physics of their
environment, but if they simulate actions, their conclusions about what will happen are
effectively informed by the information encoded implicitly in the processing dispositions of
their sensorimotor systems.

Special-purpose systems need not be modality-specific (visual, auditory, motoric,
etc.). Information about a specific domain may be encoded in amodal structures (Calzavarini
forthc, Frankland and Greene 2020). The cognitive map of the spatial environment, encoded
in the medial temporal lobe, is a prominent example (O'Keefe and Burgess 1996, Foster and
Wilson 2006). Similar structures can be used to represent the distribution of properties in
other domains, like the leg length and neck length of a set of hypothetical birds
(Constantinescu, et al. 2016), or the social hierarchy of a set of individuals (Park, et al. 2021).
There is evidence that different areas of the brain encode certain domains of objects and
properties in a high dimensional feature space (Huth, et al. 2016, Frankland and Greene
2020). These are all cases of structural representation: a structure over a set of
representations serves to represent relations and properties in the world (Shea 2018, p. 118).
A structural representation is special-purpose in the sense that its representational
significance depends on the way it corresponds to the domain it represents. Information
represented in a special-purpose structural representation may not be directly accessible to
conceptual thought. Running a simulation is a way for concept-driven thinking to rely on, and
thus reap the benefit of, that kind of information.

In short, special-purpose systems encode a wealth of modal and amodal information.
This may be encoded in structural representations, it may be implicit in processing
dispositions, or it may be explicitly represented but encapsulated from conceptual thought.
Running a simulation offers a way to derive conclusions that rely on, and therefore make use
of, special-purpose information in all these forms.

Although the existence of various forms of simulation is widely recognized, how it
works computationally is not well understood, especially in the case of simulations driven by
concepts — by concept-involving thinking. Non-human animals engage in various forms of
prospection and simulation (Clayton and Dickinson 1998, Passingham 2021). Tests of mental
planning or simulation are a standard non-linguistic way of probing animal intelligence (Halina
2021). The capacity for simulation does not require the capacity for conceptual thought in our
sense. Simulations may occur within a special-purpose system, for example in route planning
(Dragoi and Tonegawa 2011). Our question is how simulation works when it is driven by
conceptual representations. How do concepts drive simulations or interact with them?

To answer that question, my tactic will be to appeal to a model of how offline use
takes place within special-purpose systems, a process which has been discovered by cognitive
neuroscience and specified precisely in computational models. The model, in short, is that a
representation can be a ‘plug & play device’. Representations that are connected to the



environment online, driven by incoming stimuli and driving behaviour, can come to acquire
useful properties — through various mechanisms of plasticity or learning, they form
interconnected processing dispositions, or they become connected into a representational
structure. If those representations can be taken offline, and ‘played with’ in a simulation, the
simulation can make use of the representational structures and implicit information that were
built up online. Representations are unplugged from the world and plugged into a simulation.
Playing with representations in an offline simulation allows us to derive conclusions from the
information encoded, in various forms, in special-purpose systems.

The argument of this paper is that a concept is also a plug and play device. But there
is an important difference between concepts and the plug and play devices found within
special-purpose systems. Concepts are also plugged into the compositional structure of a
thought (section 6). They are effectively plugged into structures, of different kinds, ‘at both
ends’. That makes a crucial difference to what conceptual thinking can achieve.

(2) A Model of Offline Processing in Special-Purpose Systems

This section summarises work in cognitive neuroscience and computational modelling
on offline use and replay of representations in special-purpose systems. This offers a precise
characterisation of what it is for a representation to be a plug & play device. In the next
section that idea is applied, with an important modification, to concept-driven thinking.

Our first example is spatial navigation, as supported by representations in the
hippocampus and wider medial temporal lobe. This is studied most intensively in rodents,
with converging evidence that the same process is found in humans (O'Keefe and Burgess
1996, Foster and Wilson 2006, Dragoi and Tonegawa 2011, Liu, et al. 2020). The computations
take place subpersonally, within a psychological subsystem. They are not thought to involve
personal-level reasoning, although their output does feed into decisions taken by the whole
agent. The medial temporal lobe harbours various representations which interact to form a
cognitive map of an animal’s spatial environment. Components include place cells, grid cells
and head direction cells (Grieves and Jeffery 2017). For simplicity, | focus here on place cells
and a somewhat stylised description of the way place cells are involved in calculating the
shortest route through a landscape.

Each place cell is active at a specific location in a given spatial arena. One cell might
respond when the animal is in one corner, another when it is halfway down one of the walls.
The location sensitivity of a place cell is a rich computational achievement in its own right. A
place cell can be activated by complex visual cues, invariant to gaze direction. It can register
location non-visually through local smells and olfactory gradients. Place cell activity is
integrated with head direction cells and proprioceptive feedback from limb movement so that
location information is updated by the animal’s own movement, even in the dark. Plausibly,
a place cell can also act as a target, directing activity that takes the animal to the
corresponding location. Thus, each place cell is at the apex of a sophisticated package of
sensorimotor processing giving it highly specific input- and output-selectivity.



As a result of experience, a structure is built up over the array of place cells. Cells that
correspond to nearby locations get wired together so that, subsequently, they tend to
activate one another. The relation of co-activation between place cells thereby comes to
mirror the relation of proximity between locations (Shea 2018, pp. 113-6). Route calculation
depends crucially on being able to sever, temporarily, the array of place cells from their input-
and output-sensitivity. Only the relational information encoded by the co-activation relation
is used in route planning. The system can run through different routes offline in order to select
the shortest. Having relied on these internal relations to compare the length of different
potential routes, and having selected one, sensitivity to the environment is restored so that
place cells can be used to guide action.

Having representations with the kind of sophisticated input- and output-sensitivity
exemplified by place cells is obviously a useful resource. But so too is the ability to disengage
from these robust correlations with the world — to take the array of place cells offline.
Computations made with the array of representations while they are offline make use of the
structures which have been built up over those representations. Running a simulation with
representations offline enables computational use to be made of the information carried by
those structures.

This example delivers a useful insight —a computational principle that can be deployed
in many places. It shows how a representation can be a plug & play device. Useful as it is to
have representations which correlate in a sensitive and specific way with conditions in the
environment, it is even more useful to be able to sever representations from their worldly
correlations, run internal computations that make use of their interconnections, and then
restore their input-output profile so that the conclusions that have been worked out offline
can be used to guide behaviour.

There is evidence that relational structures in the medial temporal lobe, similar to
those used to represent spatial locations, are used to represent other kinds of relational
structure. One example is the relations between leg length and neck length of a collection of
hypothetical birds that participants were trained to manipulate (Constantinescu, et al. 2016).
In another example, a cognitive map of social properties was used to infer social relationships
between individuals, also using a grid-like code (Park, et al. 2021). The inferred relationships
were not encountered during training, and go beyond chains of associations (Morton, et al.
2020, Barron, et al. 2020). A grid-like code encoding objects or events in a feature space is
also found in other brain areas, including the medial PFC (Doeller, et al. 2010, Morton and
Preston 2021).

Offline simulation in these systems has been found to play a role in consolidating the
information that has been learned (Liu, et al. 2019). In the case of the spatial cognitive map,
offline replay during rest or sleep is thought to be involved in consolidating memory of the
spatial relations between locations (Olafsdéttir, et al. 2015, Buzsaki 2015). In the domain of
foodstuffs, Barron, et al. (2013) trained people to associate a variety of foodstuffs with neutral
stimuli (e.g. jelly; tea). They found that activation of these memories was involved in
constructing a representation of a novel foodstuff (e.g. tea jelly). Imagination is a way of
simulating new possibilities within a domain, allowing new connections to be formed or novel
categories to be represented (Bellmund, et al. 2018, Morton and Preston 2021).



Another area where offline use of representations is obviously crucial is in ‘model-
based’ planning. A model-based system has a representation of states of the environment,
how they are connected, and how actions the agent can perform will move it between states
(e.g. turning left at L1 takes you to L2; pulling a lever when the light goes on delivers sugar
solution). In working out what to do, a computation runs through various possible chains of
states and actions in order to evaluate which action in the current state is likely to produce
the largest long-run reward. Sometimes the world-model is programmed into the system at
the outset, for example by telling the agent the possible board positions and legal moves of a
game like chess. Other models are more like the spatial map in the hippocampus in that the
structure of the environment is learnt from experience (Whittington, et al. 2020). In both
cases, representations are manipulated offline to reach a decision about what to do.
Furthermore, even when not faced with an immediate choice to make, it seems that
simulations run in the model-based system train up the model-free action policy that is relied
on when faced with an immediate decision (Momennejad, et al. 2018).

Computational models show how to resolve the apparent paradox mentioned at the
outset —that simulation only allows the thinker to learn something if in some sense they knew
it already (Aronowitz and Lombrozo 2020). Information encoded in a dispositional connection
between stimuli (like those in the Barron et al. 2013 study) cannot itself act as an input to an
inferential process (cp. Halford, et al. (2010, p. 499), ‘An associative link per se cannot be an
argument to another association’). Running simulations in a model of the environment
(‘background planning’) allows the system to reach conclusions about how best to act in
various circumstances, conclusions which rely on the constraints encoded in the model
(Hamrick 2019). Even apart from modelling human cognition, computer scientists have found
that simulations in the form of ‘experience replays’ are useful in their own right as a tool for
training deep neural networks (Hassabis, et al. 2017).

These findings from cognitive neuroscience and computer science offer a template for
the way offline simulation can extract information from a special-purpose system, not simply
by retrieving a stored representation, but by relying on special-purpose computational
dispositions and special-purpose representational structures. Where a representation is a
plug & play device, simulations run with it offline can make use of information built up online
as a result of experience. This is the model | want to carry over to cases where simulations
are driven by concept-involving thoughts.

(3) Concepts as Plug & Play Devices

We have seen special-purpose ‘plug & play’ representations at work in cognitive
neuroscience and computer science. These discoveries offer us an insight to apply to
understanding the cognitive-computational mechanisms underlying the mental simulations
driven by conceptual thought. The claim of this paper is that concepts, too, are plug & play
devices. They give us a general-purpose ability to make offline use of representations — not
just offline use of a concept itself, but offline use of the special-purpose amodal, sensory,
motoric, affective and evaluative representations to which a concept is connected.



When a conceptual thought prompts an episode of mental simulation, special-
purpose representations are activated, not driven by current perceptual input, but driven by
the episode of thinking. The thought of soldiers mounted on polar bears prompts certain
sensory imagery. By running a sensory simulation, | imagine what the scenario might look like
and | predict the likely consequences (including for the hapless soldiers). As we saw with route
planning, it is extremely helpful to be able to take special-purpose representations offline to
derive consequences that follow from the information encoded, explicitly or implicitly, in the
special-purpose system. Conceptual thought seems to give us the capacity to do that across
the board. A concept is typically connected to a rich body of information about its subject
matter: sights sounds and smells, emotional resonances, sensorimotor affordances,
evaluative appraisals, and amodal semantic relationships. Conceptual thought gives us the
capacity to take all or most of that material offline and run simulations with it. Holding a
conceptually-structured thought in working memory is a general-purpose means for making
offline use of domain-specific bodies of relevant information.

Our ability to do that is so familiar that it is easy to overlook just how useful it is. Like
all animals, humans are equipped with a variety of specialised psychological mechanisms: to
perceive the environment and many kinds of things in it, to learn about rewards and harms,
to coordinate action with the complexity of the environment and the organism’s internal
needs. Each of these sophisticated special-purpose computational capacities encodes,
explicitly or implicitly, a store of useful information. Having the generalised capacity to run
simulations in any of these systems would be very useful indeed. Concepts seem to give us
that capacity. Not only does conceptual thought allow us to take all or most of our special-
purpose systems offline. Concepts also give us a way to focus on and manipulate any of the
objects, properties or relations that are represented in those systems. That can be a matter
forming thoughts and simulations of situations we have already encountered. It can also
involve recombining concepts so as to simulate novel scenarios.

The combinatorial power of conceptual thought has long been recognised. Putting
together existing concepts allows us to think new thoughts. Less remarked-on is the fact that
this normally brings with it the capacity to simulate or imagine a scenario corresponding to
the novel thought. | can formulate the thought a cart that runs on an iron road and then start
to imagine what that would look like and how it would work (a railway). When | suggest a
regiment of soldiers mounted on polar bears, you will start to imagine what that will look like
and what might happen. There is considerable evidence that thinking with concepts activates
representations in multiple special-purpose systems — sensory, motoric, affective, evaluative
and amodal (Barsalou 1999, 2003, Mahon 2015, Bellmund, et al. 2016, Constantinescu, et al.
2016, Barron, et al. 2020). The power of conceptual recombination lies not simply in the
capacity to recombine labels or words in the language of thought. Its power lies in the capacity
to simulate scenarios corresponding to our thoughts.

Thus, a structured conceptual thought can allow us to simulate a scenario that we
have never encountered before, and to work out possibilities for action. Having read a tip in
an online climbing forum, | can now imagine using a toothbrush attached to a telescopic pole
to clean bird droppings off a ledge high up on a cliff. The simulation leads me to realise that
the brush needs to stick out obliquely from the pole. (And watch out for dirt falling in your
eyes.) As we have seen, each special-purpose system contains its own store of useful



information: what a tool will look like from different angles; how a fruit will smell when cut
open or how it will feel when crushed; general visuo-motor affordances for action; which
rewarding outcomes are available in different situations, and which dangers; what emotional
experiences are likely to be involved; and how objects and their properties are systematically
related (in an amodal semantic space). The special-purpose information has been built up as
a result of experience. It is deployed online as we are moving through the world, perceiving
and acting. Simulations take those capacities and run them offline. Recombining concepts
into a new thought allows us to put those capacities together in novel ways. The idea that a
conceptis a plug & play device serves to draw attention to the fact that this remarkable ability
is something more than the capacity to recombine concepts in thought. We can build a
suppositional scenario equal to the thought.

Consider an example of how conceptual thought allows for recombination across
different special-purpose systems. I’'m wandering round the local farmers’ market trying to a
plan a meal | will cook for friends that night. A special offer on sea bass gives me some ideas.
| picture some of the other products | have seen and imagine them put together into a dish.
Each simulation prompts an evaluative response. Sea bass with those lovely looking squash?
Euch. Sea bass with those fresh-looking bulbs of fennel? Maybe. Perhaps roast the fennel.
What about pulses? Oh yes, chick peas on that organic stall. And some hard-crust sourdough
bread. And so on. I’'m using my spatial map of the market, sensorimotor knowledge of how to
process raw ingredients, olfactory and gustatory simulation of potential dishes, and perhaps
knowledge of a state space interrelating potential flavours. Concepts allow us to manipulate
specific components of the scenario: change chick peas for puy lentils, change the colour of
the carrots from orange to purple, fry the fennel instead of roasting it. Evaluations are brought
to bear at every step. Will the meal | am imagining taste good? Is it too far to walk back to the
bread stall? Conceptual recombination allows me to form thoughts of various novel dishes
but, as | stand next to the fish stall staring into space, it is the capacity for simulation that
allows me to consider what the dishes will be like, how to prepare them, and how to forage
for the various ingredients.

In short, concepts give us a general purpose way of taking special-purpose systems
offline so as to run simulations. They allow us to manipulate specific components and to
recombine those components in novel ways.

(4) Types of Information Connected to a Concept

Examples of simulation tend to focus on modality-specific representations (visual,
auditory, tactile, olfactory, etc.). However, simulations can equally involve amodal
representations. My hypothesis is neutral as between so-called ‘grounded’ and amodal
theories of concept-driven simulation (Calzavarini forthc). | am understanding simulation
broadly so as to cover, as well as imagination and prospection, model-based suppositional
thinking: deploying a model of the environment offline so as to consider what would happen
in various hypothetical scenarios.®> The domain-specific or task-specific representations

3 These are often called counterfactuals, but their suppositions needn’t run counter to the facts. They
are scenarios we would capture with subjunctive conditionals, whether or not the antecedent turns out
to be false, e.g. if it were to rain, xyz would happen.



involved in suppositional scenarios can be amodal (Barsalou 2016, Frankland and Greene
2020, Calzavarini forthc). Where modal representations are relied on, these need not be as
detailed as perceptual experiences (representations driven by current input). Rather than
being like a photograph, they may abstract in various ways from online representations.

Activating a concept serves to rapidly activate an extensive body of associated
information, some it only transiently (Potter 2017). We can think of the concept as ‘pointing’
to a body of information stored in memory (Quilty-Dunn 2021). The information accessed by
or through a concept encompasses sensorimotor representations, including affordances for
action and embodied experiences (Mahon 2015). However, our knowledge about objects and
their properties also appears to be organised into amodal domains of semantically related
entities, domains such as the social, emotional, mental, professional, violent, numeric and
temporal, as well as the tactile and visual (Huth, et al. 2012, Huth, et al. 2016). And even
modality-specific representations may be relied on in a simulation for their more abstract
structure. Analogical reasoning depends on perceptual and kinaesthetic representations, not
just amodal information (Catrambone, et al. 2006, Craig, et al. 2002). This seems to involve
using a perceptual relation to stand in for another relation (Silliman and Kurtz 2019). Liz Camp
has introduced the term ‘characterizations’ to encompass the many types of information, in
addition to explicitly represented semantic beliefs, that can be encoded by or with a concept
(Camp 2015). The power of concept-driven simulations is that they can draw on any of the
characterizations connected to a concept.

The representations in an unfolding simulation need not be conscious. During the
process of deliberately deciding which way to set off from the library at the end of the day, |
may not be consciously aware of the route planning going on in my hippocampal cognitive
map. | may just be aware of the result: set off this way. Aspects of a deliberate thought process
do figure in the stream of consciousness: prominently, concept-involving thoughts
themselves (occurrent desires and beliefs, goals, intentions, judgements, etc.); often also
domain-specific states (the imagined sight, smell and taste of a potential meal, together with
my affective assessment of it). But simulation can also proceed via domain-specific
representations and structures that remain unconscious.

(5) General-Purpose Combinatorial Structure

Concepts combine into thoughts using a highly general mode of combination (the
'generality constraint': Evans 1982). To a first approximation, any concept can combine in
thought with any other. More carefully, it appears that the ability to combine two concepts
in a thought is not in general restricted by the particular subject matter that the concepts
refer to. (E.g., to take concepts from several of the domains discovered by Huth et al. 2016: a
violent introvert five-foot-tall pianist.) If there are certain thoughts that we cannot think, that
is not because they are prevented from combining by the way the concepts are represented.
Compare representations in the cognitive map of space. The spatial cognitive map represents
relations between spatial locations, and is restricted to representing spatial relations. It
cannot represent any arbitrary relation between locations (e.g. relative rental cost per square
foot). Or consider binding in the visual system. There are only certain properties that can be
represented as attributes of a visually-tracked object. Colour and shape can be bound to a
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visual object, but probably not personality type. Recombination of concepts does not seem
to be restricted by subject matter. (Whether we will succeed in simulating or imagining a
scenario equal to the thought is another matter.)

The way concepts combine in thought is very similar to the way words combine in
language. This could be because conceptual thinking makes use of the language faculty,
perhaps involving sub-vocalized words or auditory imagery. It could be the other way round:
that the compositional structure of language reflects the compositional structure of thought.
Or these could be two separate but related capacities, with some conceptual thought drawing
on the language system and other conceptual thought carried out in a combinatorial
representational system that is independent of the language faculty. My hypothesis about
conceptual combinatorial structure can remain neutral on this issue.

The capacity to combine concepts depends on representations in prefrontal cortex
(Halford, et al. 2010, Krawczyk 2012, Frankland and Greene 2020). A popular account is that
prefrontal cortex sets up temporary task-relevant representations in working memory. We
can think of these as neutral labels or pointers connected to richer representations in special-
purpose systems, for example in anterior temporal cortex (Frankland and Greene 2020). The
representational structure in prefrontal cortex that interconnects working memory labels is
not tailored to any particular domain or subject matter. It is language-like in that it employs
‘combinatorial procedures that are distinct from the contents over which they operate’
(Frankland & Greene 2020, p. 17.23). The richer representations connected to the labels have
more domain-specific structures, for example map-type structures, or the structure of a
particular perceptual modality. When people reason by drawing explicit analogies, they do so
by setting up a mapping between neutral working memory labels (Halford, et al. 2010,
Krawczyk 2012). When running a simulation, the working memory labels serve to activate,
sustain and manipulate domain-specific contents. Since the working memory labels can be
combined in arbitrary ways, there is no in-principle limitation to the thoughts that can be
entertained.

Studies of category learning support this distinction between two different levels of
processing (Ashby and Valentin 2017). One level is multi-dimensional, implicit and automatic,
the other low-dimensional, rule-based and deliberate. Category learning in the deliberate
system is a matter of inferring a rule based on one or two features of the stimuli, e.g. that Xs
have long necks and no spots. The category label may be given before or even long after the
samples to be categorised, and feedback about correct and incorrect classification is not
essential. On the other hand, performance is impaired by cognitive load, by having to perform
a second concurrent task (a symptom of the ‘type 2’ or ‘system 2’ style of processing).
Automatic category learning by contrast shows minimal interference from a dual task. It can
learn a category demarcated by a large number of features in a high dimensional state space.
Learning is better if the category label comes after the samples. Feedback on performance is
essential and the response must be made within a short window of the stimulus. Learning is
impaired by simply switching the location of the response key.

My suggestion is that these two systems draw on opposite ‘ends’ of the plug & play

device that is a concept. The deliberate system makes use of reasoning on syntactic
structures, with conceptual labels embedded in a compositionally structured thought. It
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draws on explicit conceptual representations of what it takes for a sample to fall under the
concept. The automatic system operates on the material at the other end. It uses a more
implicit, feedback-based learning mechanism to carve out a region of high dimensional
feature space corresponding to the category. Since concepts are keyed into both systems,
categorization judgements can draw on either kind of information, depending on the nature
of the task (e.g. in a context where there is cognitive load, that will impede the type 2 system).

(6) How Do Simulations Come to Reflect Combinatorial Structure?

So far we have seen that a concept is plausibly a plug & play device. Like plug & play
representations within a special-purpose system, a concept allows representations to be
taken offline and deployed in a simulation. The simulation draws on dispositions and
structures that have been built up online. However, concepts are also importantly different.
If a concept is a plug & play device, it is a device that plugs into structures at both ends. At
one end there is the structure of representations in a special-purpose system. At the other
end, it is plugged into the combinatorial structure of a conceptual thought. Each concept is
like a hook with a collection of odd-shaped objects hanging off it. The hooks can be hung up
together any way you like, but it is a substantial achievement to get the collection of dangling
odd-shaped objects to arrange themselves into a coherent picture (Figure 1).

DOG

A

Figure 1. (a) A label in working memory is connected to many different
representations in special-purpose systems. (b) Working memory labels combine to
form a thought. The thought drives a simulation of an integrated scenario that
reflects the mode of combination of the labels. (Images from http://clipart-
library.com. Graphic copyright the author.)

Jackson, et al. (2021) argue that concept-driven thinking (‘controlled semantic
cognition’) has to perform two functions at once that pull in opposite directions. It needs to
deploy and combine context-invariant conceptual representations, with contents that are not
tailored to a specific time, place or modality. But it also needs to connect up conceptual
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thought to modality specific perception and behaviour in a way that is suited to a particular
context and task. Using neutral labels or pointers enables context-invariance. Each label acts
as an unstructured representational constituent, either because there is no structure within
a concept (Fodor 1983, pp. 90-3, Quilty-Dunn 2021), or because any structure that is present
has no effect on the processes of combination and reasoning that take place over labels. But
that leaves the other half of the problem unresolved: how to achieve context-sensitivity.

Specifically, the information recruited into a simulation by a concept has to be
sensitive to the other concepts with which it is combined. The simulated content driven by
APPLE in the context of ApPpLE TREE will be very different from that recruited by APPLE in the
context of APPLE CRUMBLE. ‘A full understanding of a particular combination must flexibly
estimate the interactions between the component parts’ (Frankland & Greene 2020, p. 17.9).
Special-purpose resources will carry some of the load here, selecting a collection of
components that fit together with one another —that make sense within the representations
and structures of the special-purpose system. Simulating GREEN LEAF will select for shades of
green consistent with natural foliage; GREEN SEA selects for different shades.

However, a deeper problem presses. A simulation has to respect the mode of
combination over the labels. We imagine something different for boG BITES MAN than for the
rather more surprising MAN BITES DOG. A thought is not just a list of concepts. A simulation has
to do more than simply construct a scenario consistent with the collection of contents being
entertained. The way special-purpose resources are combined in a simulation has to
somehow reflect the combinatorial structure of the corresponding thought.

Models of conceptual combination tend to focus on one aspect of Jackson et al.’s
problem and overlook the other. In one model, the pointers or labels are addresses for the
location of stored contents (Kriete, et al. 2013). In processing a three-word sentence, the PFC
has separate memory stores for agent, verb and patient. Each contains the address where the
relevant content is stored. This does not tell us why something different is simulated when
‘dog’ is the agent of the verb ‘bite’ rather than the patient. Frankland and Greene (2015)
found that the identity of agent and patient are coded in distinct subregions of left mid
superior temporal cortex, one for dog-as-patient and another for dog-as-agent. That would
achieve context-sensitivity, but does not explain invariance, the invariant content of poG
shared between the two roles. Frankland & Greene (2015) suggest that both patterns of
activity are in turn pointers to shared content, which is housed elsewhere in cortex (p. 11737).
But that does not explain how the role-specific content is based on or constructed from the
context-invariant content.

Another model uses content-addressable memory. For example, in the semantic
pointer architecture of Eliasmith (2013), the representations which enter into combinations
are compressions of richer perceptual representations. They are not neutral labels, but
pointers to richer contents. Combinatorial operations are defined on the pointers which are
reversible, allowing the components to be recovered (the pointer is ‘dereferenced’). This is
like the tensor product architecture suggested by Smolensky (1995). A vector for dog is
convolved with a vector for agent so as to form a representation of dog-as-agent. The identity
of the agent (dog) can be extracted from the convolution and decompressed. Blouw, et al.
(2016) use circular convolution for vector combination, which can be applied recursively
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(although the components, since they are compressed, are only imperfectly recoverable).
Halford et al. (2010) use tensor products, so that the representation for Sally loves John, say,
is the tensor product of three vectors, one for Sally, one for John, and one for the relation
Loves(x,y). The differentiable neural computer architecture of Graves, et al. (2016) achieves
the same effect by separating operations performed by a ‘controller’ from the contents being
processed (vectors retrieved from memory). The hybrid symbolic-connectionist architecture
of LISA has dedicated individual units for each object and each relational role (Knowlton, et
al. 2012). These models all successfully implement context-invariance of conceptual contents
across different modes of combination. What they do not explain is how those contents are
systematically modulated according to the mode of combination: why the dog that is
simulated for dog bites man is different from the dog that is simulated for man bites dog.
Indeed, these models all use combinatorial principles, like taking tensor products with role
vectors, designed so that the way dog will be decodable from dog-as-agent, say, is not
affected by the content found in the patient position.

How, then, to implement combinatorial principles that do not depend on the contents
of the components being combined, while ensuring that simulations driven by a conceptual
thought reflect the combinatorial structure? Here is one potential model (following
suggestions in Frankland & Greene 2020). We have seen that the rich contents connected to
a concept (like DoG) can be coded in a high dimensional state space in a special-purpose
system (amodal or modal). The state space encompasses many features over which items in
that domain can vary (e.g. features of animals). Particular concepts (e.g. boG) correspond to
regions in the space. A particular instance is represented by a point in state space (a particular
dog). One way of adjusting to context is to move between regions of state space. For example,
in the context of BIG, the concept boG will only activate regions of its state space for which the
size feature is relatively large (relative to the range of sizes that fall within the poG region). To
take another example, GREEN LEAF will encompass one range of values along the colour
dimension, GREEN SEA will encompass another.

My tentative suggestion is that there are also dimensions in special-purpose state
space that correspond to compositional roles. For example, there is a dimension in the boG
state space that corresponds to the agent-patient distinction. When working memory labels
are combined into the structure dog-bites-man, the label for DoG is assighed agent as a
feature. The contextually appropriate simulated scenario then has to make use of the
subregion of the dog state space that corresponds to agent on the agent-patient dimension.
In effect, when so-combined, the label for DOG serves to activate only information consistent
with dog-as-agent. Further interactions with the regions connected to the other labels (MAN,
BITING) result in the construction, in special-purpose state space, of an integrated scenario
where the regions of state space activated by each label are adjusted to fit with one another.

According to this suggestion, the syntactic structure into which working memory
labels are combined furnishes semantic constraints on the types of scenario that will be
simulated. In fact, much of the work in linguistics on compositional semantics is focused on
pinning down these constraints (in the case of language comprehension). Syntax constrains
the type of scenario with which a thought can be fleshed out. Jerry Fodor’s classic view is that
there is a language module which parses linguistic input, outputting a linguistic form, which
is just a structured representation of lexical items, with no semantic analysis ‘inside’ lexical
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items (Fodor 1983, pp. 90-93). More recently, Paul Pietroski has published a sophisticated
theory in which word meanings are underspecified. Syntactic structure tells the
comprehension system what kinds of information to look up, for each word, in order to
understand a sentence (Pietroski 2018).# Another model is that the syntactic and closed-class
elements of a sentence specify semantic content, but only of a very general kind. For example,
the closed class elements in the sentence, ‘Those boys are painting my railings’ specifies that
the meaning has to be a scenario in which those somethings are somethinging my somethings
(Evans 2015). These are all ways in which syntactic structure can serve to constrain the
semantic possibility space within which a scenario will be simulated.

My suggestion, then, is that the compositional structure of a conceptual thought
constrains which subregions of high dimensional feature space are made available by each
content. The simulated scenario is constructed out of the interaction of these subregions. This
is just a sketch. Much more is needed to specify a detailed model, properly informed by
empirical findings. The sketch is useful in so far as it highlights the nature of the problem. The
hypothesis that concepts are plug & play devices is plausible. It is supported by empirical
findings and computational modelling. The dog-bites-man / man-bites-dog question then
becomes pressing. More research is needed to discover how thought-driven simulations are
constrained to reflect the combinatorial structure of thought.

(7) Conclusion

Concepts provide us with a way of running offline simulations in any of our special-
purpose systems. A concept allows us to manipulate specific components of a simulation, for
example the colour of an object in an imagined scenario. Concepts combine in a general-
purpose way, which allows us to form novel recombinations, and to bring together special-
purpose systems in a simulation that transcends our real world experience.

This convergence of general-purpose and special-purpose features makes concept-
driven thinking especially effective. It allows us to draw on the information that has been built
up within special-purpose systems as a result of experience. A simulated scenario is a form of
working memory. Representations are maintained and manipulated, constructing an
integrated picture of a situation or hypothetical possibility. Those are the functional features
of the global workspace (Carruthers 2015) — of representations that are conscious (Dehaene,
et al. 2017). The information contributed by each constituent concept is selected so as to
mesh with the others in the workspace, and to reflect their mode of combination. So it seems
that consciousness is crucial to this mode of thinking. Conscious, deliberate, conceptual
thought unites (i) a general purpose way of taking information offline and recombining
elements, with (ii) a context-sensitive way of integrating special-purpose systems so as to
represent integrated scenarios in a global workspace. That is possible because each concept
is a plug & play device. Therein lies the special power of thinking with concepts.

In Pietroski’s terminology, word meanings are instructions for how to access a concept. Which concept
is fetched depends on the syntactic structure and grammatical / closed class content of the sentence.
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